MATH 1010E University Mathematics
Lecture Notes (week 2)
Martin Li

1 More about exponential function

Last week, we have defined the exponential function exp: R — R to be
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You may have also learned about Euler’s number e, which is an irrational
number defined by the “limit”
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We can therefore define the “exponential function with base e” as the func-
tion z > e®. We show that it indeed agrees with the exponential function
exp defined by an infinite series.

Theorem 1.1 e* = exp(z) for all z € R.

Proof: We first show that it is true for z = 1, i.e. exp(1l) = e, or equiva-

lently,
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Using the binomial theorem,
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Taking n — oo, the left hand side approaches e and the right hand side
approach exp(l) since each term in the bracket approach 1 as n — oo.
Hence, we have shown that e =exp(1).



To show that e” = exp(z) for all z € R, assuming we can move the “lim”
outside the square bracket below:
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Multiplying both the numerator and denominator of % by z and let m := nz,
noting that m — oo as n — oo, the right hand side becomes
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Using the binomial theorem again and argue as before, we can show that
the right hand side is
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This proves the theorem.

Question: Try to catch the “loopholes” in the proof above. Can you
give a more rigorous proof?

Now, let’s look at more properties of the exponential function e®.

Proposition 1.2 The following statements hold:
(i) etV =¢® - €Y for all z,y € R.
(i) €® >0 for allz € R and e® > 1 for all z > 0.
(1) x > e” is an increasing function, i.e. e® < e¥ for any x < y.
(iv) limg;_ 400 €% = 400 and lim,_,_ e* = 0.
The proof of (i) was sketched in last week’s lecture. To see (ii), we first

see that if z > 0,
=lta+z+o>1

since all the terms we have dropped are positive. To see that e* > 0 for
z < 0, first of all we have €® = 1, using (i) we have
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for any z > 0. To prove (iii), again we use (i) combined with (ii): if z < v,
then y =z + h for some h > 0, therefore by (i)
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since e > 1 by (ii). For (iv), notice that for z > 0, we have ¢* > 1 +z since
we are dropping only positive terms. As 1+ 2 — +00 as x — +o0, we also
have lim;_, 4o €® = 400. The other limit follows from the relationship that

e’ = e%, for all x > 0.
Combining all of these properties above, the graph of the exponential
function looks like this: %
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2 Trigonometric functions

Define two functions sin : R — R and cos : R — R by
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It is a nontrivial fact that the two series definitions above agree with the
usual definition of sin and cos using right angled triangles in trigonometry
where z is the angle measured in radians. Similarly, we also define

sinx

tanz = .
cosT

Example 2.1 Find the first few terms for a series definition of tanzx.
Solution: Suppose that tanz has a series expansion like this:
tanx:a0+a1x+a2$2+a3x3+~-- .

By definition, tanz cosz = sinz, putting it their series expansions, we have
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Expanding the left hand side and collecting like terms, we obtain

+aw+ _ao),_2+( D)at 4o = L
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Compare their coefficients on both sides, we get ag = 0, a; = La-%2=0
hence a; = 0. Also, a3 — 4 = —% hence a3z = % Therefore, the first two

terms in the series expansion of tan z is
o3
tanz =24+ — +--- .
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Question: Can you find the general term aj in the series expansion of
tanz?

Proposition 2.2 We have the following well-known properties for trigono-
metric functions.

(i) (Periodicity)
sin(z + 27) = sin z,

cos(z + 27) = cos z.
(i3) sin®x + cos?z = 1.
(iii) (Double angle formula)
sin 2z = 2sinz cos z,
2

cos 2z = cos® x — sin® .

(i) (Half angle formula)

ginZ = 1—cosz
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Note that (ii) is in fact a restatement of Pythagoras’ Theorem. We can
actually derive (iv) from (iii) (Exercise!) It is also a good exercise to try to
“prove” the identities above using only the series definitions.

We can define the following cousins of trigonometric functions by taking
reciprocal:

secx = , CSCI:=——) cotx := ;
cosT sinx tanx




Unlike their cousins, these new functions are not defined on the whole real
line R. (Question: what are their maximal domain of definition? Can you
sketch the graph of all these six trigonometric functions?)

Exercises: Prove the following identities:

(i) 1+ tan®z = sec®z,

(i) 1+cot?z = csc®z.

3 Hyperbolic functions

We can use the exponential function to define two functions sinh : R —
R and cosh : R — R, called the hyperbolic sine and hyperbolic cosine
respectively, by
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We also define the following analogous to the usual trigonometric functions:
sinh 1 1 1
tanhz := , sechx:=—— cschz = — , cothz:= .
coshx coshx sinh x tanh o

Example 3.1 Find the series expansion of sinhz and cosh z.

Solution: Using the series expansion of e®, we see
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Adding and subtracting the two formulas above, we easily obtain:
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cosh$=—2—:l+—2-!—+%+~-: even part of e*.

In other words, we have
e® = coshz + sinh z.

We will see in the next section that there is a similar formula for sin z and
cosz, but that involves the use of “complex numbers”.



Proposition 3.2 The following identities are true.
(i) cosh?z — sinh?z = 1.
(i) 1 —tanh?z = sech®z, and coth® z — 1 = csch?z.
(i) (Sum to product formula)
sinh(z + y) = sinh z cosh y + cosh z sinh v,
cosh(z + y) = cosh z cosh y + sinh z sinh 3.

Exercise: Prove the above proposition starting from the definitions.
Example 3.3 Show that cosh : R — R is neither 1-1 nor onto.
Solution: Note that cosh is an “even function”, i.e. for any z € R,

cosh(—z) = coshz.

Therefore, we have cosh(1) = cosh(—1) but 1 # —1. So it is not 1-1.
To see that it is not onto, recall that e* > 0 for all zR, therefore, for all
z €R,

eCE +e—$
coshy = ——— > 0.
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In particular, there is no z € R such that coshz = —1. Hence, it is not onto.

Exercise: What is the range of cosh : R — R?
Exercise: Sketch the graph of all these six hyperbolic functions.

4 Additional topics: Euler’s formula
We have all known the fact that 22 > 0 for any real number z. But what if

we assume there is some kind of number ¢ which is a solution the equation

22 = —1. Consider all the expressions

z=a-+ bi

where a, b are real numbers. Then, we can formally do arithmetic on these
complex numbers keeping in mind that 5> = —1. For example,

(a +bi)(c + di) = (ac — bd) + (bc + ad)i.



Hence, suppose we use the series expansion to evaluate e*:
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= cosz +isinz.
We have just proved the Fuler’s formula: for any = € R,

e = cosx +isinz.
Hence, we have the following formula:
ei:l: g e—ix ei:): _ e—ix
CoOST = ——— and sing = —————
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Note how similar it is to the definitions of cosh z and sinh z.
Exercise: Use these formula to prove that

sin(z + y) = sinz cosy + siny cos z.

5 Introduction to limits

Given a function f, and some real number a, we want to understand what

it means by the symbol
lim f(z)= L.

Tr—a

Intuitively, it means that when z gets “closer and closer” to a, the function
value f(x) also gets “closer and closer” to the number L, called the limit of
fatz=a.

Example 5.1 Consider the function f : R — R defined by f(z) = 22.

If we draw a table of the values f(z) against z:

z f(z)
1.1 1.21
1.01 1.0201

1.001 1.002001
1.0001 | 1.00020001




Numerically we can see that as 2 approaches 1, we have f(z) approaches 1
as well. Therefore, we say that
lim 2% = 1.
z—1
If we look at the graph of the function instead, we see that the height of
the points on the graph corresponding to x gets closer to 1 as z gets closer

to 1. %
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For those of you interested, the precise mathematica definition of limit
is given below (not required in this class).

Definition 5.2 We say that [imgy—af(z) = L if for any € > 0, there exzists
0 > 0 (depending on €) such that

|f(z) — LI <e
for all z such that 0 < |z —a| < 4.

In some sense, € is the tolerance on the error of the function value f(z)
from L, and ¢ is measuring how “close” we need to be around a to achieve
the e-level of error.

6 How to calculate limits I

We will start with some simple examples to illustrate how to calculate limits.

lRule 1: Substitute x = a into f(z) if everything makes sense]

Example 6.1 (1) lim;,122% + 3z — 1 =2(1)2+3(1) - 1 = 4.

(2) lim,_,/psinz =sin 5 = 1.



' o2 —1)2-1
(3) limg, m_ll = % = % =0.

: 2_ 2_
(4) limg,; =L = 1= = s(m.

In the last example, we see that sometimes we cannot do direct substitution
to get the limit. In this situation, we can sometimes apply the next rule.

IRule 2: Simplify the expression first, then substitute. ’

Example 6.2 Consider the following:

(1) limg_; =L = lim, .—(IJFJC)_(T_”

=limy1(z + 1) =l+1=2

. . sinz/cosz
(2) limg_ 02 = lim,_,, Sn&/cosz

1
sinx

— 1 1 _ 1 _
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(8) limgq ﬁ = limgy4 (4_15(*2_“/5) = limg4 @0+

_ 1 _ _1
=limeimm = ma =
The last example is a useful technique called “rationalization”.

Note 1: To consider the limit lim;_,, f(z), the function needs not be
defined at z = a. See Example 6.2.

Note 2: We can consider the “infinity cases”:  — Foo0 and/or L = Foo.

Example 6.3 We have

. . 1

lim — = o0, and lim = =0.
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Exercise: What about

.1 : 1
lim — and lim -7
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z<0



Note 3: Limit may not always exists.

Example 6.4 Show that the limit lim;—0 f(x) does not exist for the func-
tion

sy = { 4 4220
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From the graph, it is easy to see that

lim f(z) =1, and lim f(z) = —1.
z—0 z—0
x>0 <0
Since they are not equal to each other, the limit lim,_,o f (z) does not exists
since we do not know whether we should choose 1 or —1.
In fact, once a limit exists, it must be unique.
Fact: (Uniqueness of limit) If we have
lim f(z) = L4 and lim f(z) = Lo,

r—a T—ra

then L; = Ls.
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